结构化数据与非结构化数据有什么区别?

Author Tanmer Tanmer
Tanmer · 2024-10-18发布 · 1052 次浏览

结构化数据和非结构化数据是大数据的两种类型,了解两者之间的差异是充分利用这两者的关键,特别是在从Web数据中获益时。

结构化数据和非结构化数据是大数据的两种类型,这两者之间并不存在真正的冲突。客户如何选择不是基于数据结构,而是基于使用它们的应用程序:关系数据库用于结构化数据,大多数其他类型的应用程序用于非结构化数据。

然而,结构化数据分析的难易程度与非结构化数据的分析难度之间的关系日益紧张。结构化数据分析是一种成熟的过程和技术。非结构化数据分析是一个新兴的行业,在研发方面有很多新的投资,但不是一项成熟的技术。了解两者之间的差异是充分利用这两者的关键,特别是在从Web数据中获益时。

什么是结构化数据

大多数人都熟悉结构化数据的工作原理。结构化数据,可以从名称中看出,是高度组织和整齐格式化的数据。它是可以放入表格和电子表格中的数据类型。它可能不是人们最容易找到的数据类型,但与非结构化数据相比,无疑是两者中人们更容易使用的数据类型。另一方面,计算机可以轻松地搜索它。

结构化数据也被成为定量数据,是能够用数据或统一的结构加以表示的信息,如数字、符号。在项目中,保存和管理这些的数据一般为关系数据库,当使用结构化查询语言或SQL时,计算机程序很容易搜索这些术语。结构化数据具有的明确的关系使得这些数据运用起来十分方便,不过在商业上的可挖掘价值方面就比较差。

典型的结构化数据包括:信用卡号码、日期、财务金额、电话号码、地址、产品名称等。

什么是非结构化数据

非结构化数据本质上是结构化数据之外的一切数据。它不符合任何预定义的模型,因此它存储在非关系数据库中,并使用NoSQL进行查询。它可能是文本的或非文本的,也可能是人为的或机器生成的。简单的说,非结构化数据就是字段可变的的数据。

非结构化数据不是那么容易组织或格式化的。收集,处理和分析非结构化数据也是一项重大挑战。这产生了一些问题,因为非结构化数据构成了网络上绝大多数可用数据,并且它每年都在增长。随着更多信息在网络上可用,并且大部分信息都是非结构化的,找到使用它的方法已成为许多企业的重要战略。更传统的数据分析工具和方法还不足以完成工作。

典型的人为生成的非结构化数据包括:

  • 文本文件:文字处理、电子表格、演示文稿、电子邮件、日志。
  • 电子邮件:电子邮件由于其元数据而具有一些内部结构,我们有时将其称为半结构化。但是,消息字段是非结构化的,传统的分析工具无法解析它。
  • 社交媒体:来自新浪微博、微信、QQ、Facebook,Twitter,LinkedIn等平台的数据。
  • 网站: YouTube,Instagram,照片共享网站。
  • 移动数据:短信、位置等。
  • 通讯:聊天、即时消息、电话录音、协作软件等。
  • 媒体:MP3、数码照片、音频文件、视频文件。
  • 业务应用程序:MS Office文档、生产力应用程序。

典型的机器生成的非结构化数据包括:

  • 卫星图像:天气数据、地形、军事活动。
  • 科学数据:石油和天然气勘探、空间勘探、地震图像、大气数据。
  • 数字监控:监控照片和视频。
  • 传感器数据:交通、天气、海洋传感器。

结构化数据与非结构化数据:有何区别

从上文的解释中,结构化和非结构化数据之间的差异逐渐变得清晰。除了存储在关系数据库和存储非关系数据库之外的明显区别之外,最大的区别在于分析结构化数据与非结构化数据的便利性。针对结构化数据存在成熟的分析工具,但用于挖掘非结构化数据的分析工具正处于萌芽和发展阶段。

并且非结构化数据要比结构化数据多得多。非结构化数据占企业数据的80%以上,并且以每年55%~65%的速度增长。如果没有工具来分析这些海量数据,企业数据的巨大价值都将无法发挥。

随着储存成本的下降,以及新兴技术的发展,行业对非结构化数据的重视程度得到提高。比如物联网、工业4.0、视频直播产生了更多的非结构化数据,而人工智能、机器学习、语义分析、图像识别等技术方向则更需要大量的非结构化数据来开展工作。

 

参考文章:

《Structured vs. Unstructured Data》

《What’s the Difference Between Structured and Unstructured Data?》

《大数据可能“说谎”,非结构化将呈现更丰富的世界》

 

提交反馈

博客 博客

专注数字内容治理,助力数字体验升级

实现内容可访问性的意义与实践:构建包容性数字体验

实现内容可访问性的意义与实践:构建包容性数字体验

内容可访问性旨在确保所有用户(包括残障人士)都能顺畅浏览、理解并交互数字内容,是构建包容性数字体验的关键。本指南解析内容可访问性的定义、价值、适用行业与 WCAG 核心原则,并涵盖文本可读性、媒体替代文本、导航交互、表单设计及色彩对比...

Author b6bb
By Lisa
发布:2025-12-08
从信息壁垒到高效信息分享:全面解析如何打破组织孤岛

从信息壁垒到高效信息分享:全面解析如何打破组织孤岛

组织孤岛会造成部门间信息封闭,影响沟通与协作,导致生产力下降和目标不明确。本文介绍了组织孤岛的表现、影响以及如何通过统一目标、知识共享、工作流程管理等策略打破孤岛,提高公司整体效率与增长。采用Baklib平台等协作工具,有助于实现无缝...

Author organizational-silos
By Lisa
发布:2025-12-08
释放全渠道体验潜力:构建统一的内容与设计运营体系

释放全渠道体验潜力:构建统一的内容与设计运营体系

随着数字渠道的激增,企业需要应对内容和设计的碎片化问题。通过无头内容管理系统(Headless CMS)和COPE理念,企业可以实现“一次创作,全域发布”,优化跨渠道内容分发和用户体验。Baklib数字内容体验云平台提供全渠道解决方案...

Author 9866
By Lisa
发布:2025-12-04
如何利用单一事实来源(SSOT)优化SaaS业务流程与客户体验

如何利用单一事实来源(SSOT)优化SaaS业务流程与客户体验

单一事实来源(SSOT)是整合多个系统和数据的关键,帮助SaaS企业提高数据一致性、减少重复、打破数据孤岛,并提高整体生产力。通过实施SSOT,企业能够优化工作流程、促进部门协作、提高客户满意度。本文将探讨SSOT的好处、创建步骤及其...

Author creating-a-single-source-of-truth
By Lisa
发布:2025-12-04
知识管理的复兴与十大典型用例

知识管理的复兴与十大典型用例

本文基于 Baklib 平台,总结知识管理十大典型用例,展示其在共享、学习、创新与 AI 转型中的价值,助力企业智能化升级。

Author cfab
By Lisa
发布:2025-10-28
内容与语义层:释放企业知识资产的潜能

内容与语义层:释放企业知识资产的潜能

语义层通过为内容添加上下文与结构,实现数据与知识的智能连接。借助 Baklib 平台,企业可将分散内容整合为统一知识体系,提升内容管理、搜索与智能决策能力。

Author f871
By Lisa
发布:2025-10-23
葡萄酒 + 数字产权:ZWine 葡萄酒数字资产引领行业新变革​

葡萄酒 + 数字产权:ZWine 葡萄酒数字资产引领行业新变革​

随着数字技术的不断进步和行业的持续探索,“葡萄酒 + 数字产权” 模式有望成为葡萄酒行业发展的新趋势。ZWine 葡萄酒数字资产作为行业先行者,若能有效应对当前面临的问题与挑战,不断优化平台功能和服务,将引领葡萄酒行业进入数字化发展的...

Author zwine
By 巴克励步
发布:2025-10-17
企业级CMS选型深度指南(2025版)

企业级CMS选型深度指南(2025版)

企业级CMS选择关乎战略成败。本文总结2025年顶尖CMS平台特性与适用场景,提供评估标准与实践经验,助力企业打造高效、安全、可扩展的内容中枢。

Author 73d0
By Lisa
发布:2025-09-15