大数据发展40载,传统数据和网络大数据存在哪些不同?

Author Tanmer Tanmer
Tanmer · 2024-10-18发布 · 481 次浏览

作为主要数据类型,如今的网络大数据都有哪些特点?本文将通过传统数据与网络数据的对比,探讨网络大数据的特征。

从“大数据”一词的正式出现距今已经将近40年的时间,现如今,互联网成为大数据三大来源之一,是获取、传播和扩散相关信息的重要渠道。作为主要数据类型,如今的网络大数据都有哪些特点?本文将通过传统数据与网络数据的对比,探讨网络大数据的特征。

传统数据和网络大数据的区别

结构化数据和非结构化数据

传统行业更多的是结构化数据,存储在数据库里,可以用二维表结构来逻辑表达实现的数据,像以应用oracle、Sql Server等数据库的制造型企业的ERP系统。而网络大数据更多的是非结构化数据,就是不能以二维形态描述的,例如所有格式的办公文档、文本、图片、XML、HTML、各类报表、图像和音频/视频信息等等,像是医疗影像系统、教育视频点播、视频监控、国土GIS、 设计院、文件服务器( PDM/FTP)、媒体资源管理等具体应用。

数据的体量

互联网拥有海量的数据,由于互联网行业的特点,每时每刻都会产生海量的数据,它的数据往往是PB级的, 1个PB有多大呢?它相当于2的50次方个字节。如果你对此没有概念,那么简单来说,《史记》约有52万多汉字,1个PB能够存储至少10亿部《史记》, 以百度、腾讯、阿里为代表的企业。传统的一个生产制造工厂三个月制造的数据也不到100G。这是天大的一个差别。

数据分析的目的不同

互联网行业会对这些网络大数据数据分析,挖掘,无论是过去的数据还是即时的数据,数据不再是静止和陈旧的,任何被遗忘在服务器中的数据,都可能被重新利用,从而发现其中与我们、与行为、与现象的相关性,比如:
谷歌公司每天都会收到来自全球超过30亿条的搜索指令,经过多年数据的累计,谷歌公司建立了“咳嗽",“发热”等搜索关键字与流感地区的联系,于是在2009年谷歌成功地在美国预测了冬季流感的传播,并且精确到地区和州等等。而传统行业则不会过多去关注过去的数据,一般月底会盘点 ,出一些财务的数据分析报表,历史的数据会存放于备份库里,有问题才会去查找。

数据获取方式的质变

数据获取方式的质变是大数据能够产生的核心要素。对传统数据的获取方式多是以人工的方式获取数据,最大的特点是手动输入数据。传统记录数据的方式只能是小范围的,少量的和准确度欠佳的。而现在的数据获取方式大多是通过URL传输和API接口,大体上数据获取的方式有这样几类:爬虫抓取、用户留存、用户上传、数据交易数据共享

价值差异

网络大数据与传统数据的核心差异在于其价值的不可估量。传统数据的价值体现在信息传递与表征,是对现象的描述与反馈,让人通过数据去了解数据。而网络大数据是对现象发生过程的全记录,通过数据不仅能够了解对象,还能分析对象,掌握对象运作的规律,挖掘对象内部的结构与特点,甚至能了解对象自己都不知道的信息。

在数据大爆炸的互联网时代,数据的类型也是复杂多样的,包括结构化数据、半结构化数据、非结构化数据。结构化最常见,就是具有模式的数据。非结构化数据是数据结构不规则或不完整,没有预定义的数据模型,包括所有格式的办公文档、文本、图片、XML,  HTML、各类报表、图像和音频/视频信息等等。网络大数据采集,是大数据分析的入口,所以是相当重要的一个环节。

传统数据采集的不足

传统的数据采集来源单一,且存储、管理和分析数据量也相对较小,大多采用关系型数据库和并行数据仓库即可处理。对依靠并进行计算提升数据处理速度方面而言,传统的并行数据库技术追求高度一致性和容错性,根据CAP理论,难以保证其可用性和扩展性。

契合时代的数据采集方法:网络数据采集

网络大数据采集是指通过网络爬虫或网站公开API等方式从网站上获取数据信息。该方法可以将非结构化数据从网页中抽取出来,将其存储为统一的本地数据文件,并以结构化的方式存储。它支持图片、音频、视频等文件或附件的采集,附件与正文可以自动关联。除了网络中包含的内容之外,对于网络流量的采集可以使用DPI或DFI等带宽管理技术进行处理。

互联网极大地改变了人们的生活,大量、高速、多变的信息每天都围绕在人们身边,我们需要更好的处理方式,去应对这种随时随地的变化。作为成都本土专业的DaaS服务商(数据即服务) ,我们推出网络大数据采集系统,集数据采集、数据管理分析、数据交换共享为一体,实现数据从采集,处理到应用的全生命周期管理。为政府、医疗、交通、旅游、金融、教育、企业等多个领域提供高效的大数据整体应用解决方案

 

提交反馈

博客 博客

专注数字内容治理,助力数字体验升级

搜索功能在IA信息架构中的重要指标和地位

搜索功能在IA信息架构中的重要指标和地位

本文探讨了企业搜索问题背后的深层原因,指出搜索“失效”往往源于内容策略、信息建模和用户体验的缺失,而不仅仅是搜索引擎本身的问题。通过引入 Baklib 全文检索 智能搜索,企业可优化知识管理体系,提升搜索相关性、及时性和针对性,从而真...

Author 8f1d
By Lisa
发布:2025-03-25
Baklib在软件科技行业的应用

Baklib在软件科技行业的应用

通过Baklib强大的文档管理、知识共享、客户支持和品牌内容展示功能,帮助软件科技企业提升内容体验和用户体验

Author application
By aQian
发布:2025-03-24
大数据时代的数字内容挑战:从创业到企业的内容治理之路

大数据时代的数字内容挑战:从创业到企业的内容治理之路

在数字化时代,内容治理成为企业与创业者面临的核心挑战。Baklib数字内容体验云平台提供模块化管理、高效分发与智能优化方案,助力教育、知识管理与产品文档领域的内容升级。通过数据驱动的优化策略,Baklib让内容管理更高效、可持续,助力...

Author dfab
By Lisa
发布:2025-03-17
分类法与信息架构实施指南:确保成功

分类法与信息架构实施指南:确保成功

本指南探讨了在信息架构实施过程中常见的挑战及应对策略,包括技术实现、搜索功能、用户体验、治理与安全以及工作流程管理。通过利用Baklib等智能知识管理工具,企业可以优化实施过程,提升管理效率,确保信息架构的可扩展性和用户体验。

Author 3126
By Lisa
发布:2025-03-12
人工智能的未来:从数据、算法、算力到知识的融合

人工智能的未来:从数据、算法、算力到知识的融合

人工智能的发展正在从纯粹的数据驱动走向数据与知识的融合。周志华教授提出的“反绎学习”为这一转变提供了理论框架和实践方法。随着AI技术进入新的阶段,知识的重要性将愈发凸显,未来的AI系统将不仅仅是“数据的奴隶”,而是能够充分利用人类智慧...

Author data-to-knowledge
By Baklib
发布:2025-03-05
跨越鸿沟与 AI 助力:Baklib 引领企业成功之路

跨越鸿沟与 AI 助力:Baklib 引领企业成功之路

杰弗里·摩尔在《跨越鸿沟》中指出,技术产品若未能在主流市场获得吸引力,便可能消亡。而为了成功推广创新产品,企业需专注于特定客户群体,并小心在早期采用者与早期多数者之间进行过渡。此外,人工智能的引入在各行业展现出显著的投资回报和效率提升...

Author d465
By Baklib
发布:2025-03-04
数字内容管理新突破:Baklib助力企业优化信息架构

数字内容管理新突破:Baklib助力企业优化信息架构

本文探讨信息架构(IA)对企业运营的基础性作用,强调其在营销、客户体验和数据治理等领域的影响。通过Baklib数字内容体验云平台,企业可以构建高效的知识管理系统,提升信息组织和内容展示,推动数字化转型与业务增长。

Author adf4
By Lisa
发布:2025-02-27
使用知识中台作为跨组织工作的文档存储的五个好处

使用知识中台作为跨组织工作的文档存储的五个好处

对任何组织来说,保持文档井然有序和可访问性是一项关键任务。在本地网络驱动器上存储文档的传统方法可能耗时且难以管理,并限制了谁可以访问。那么,当您想在多个组织之间轻松共享文档时,会发生什么?

Author 3e3f
By Lisa
发布:2025-02-27
通过打造信息架构,提供全渠道一致性的客户体验

通过打造信息架构,提供全渠道一致性的客户体验

随着业务数字化转型的推进,企业面临的全渠道挑战变得愈加复杂。如何在多种平台、设备和渠道之间提供一致且个性化的体验?Baklib通过优化信息架构,帮助企业应对这些挑战,确保能够高效地管理和交付一致的内容体验。

Author 9dec
By Lisa
发布:2025-02-27